Partial inactivation of cardiac 14-3-3 protein in vivo elicits endoplasmic reticulum stress (ERS) and activates ERS-initiated apoptosis in ERS-induced mice.

نویسندگان

  • Flori R Sari
  • Kenichi Watanabe
  • Bambang Widyantoro
  • Rajarajan A Thandavarayan
  • Meilei Harima
  • Shaosong Zhang
  • Anthony J Muslin
  • Makoto Kodama
  • Yoshifusa Aizawa
چکیده

BACKGROUND/AIMS Excessive endoplasmic reticulum stress (ERS) triggers apoptosis in various conditions including diabetic cardiomyopathy and pressure overload-induced cardiac hypertrophy and heart failure. The primary function of 14-3-3 protein is to inhibit apoptosis, but the roles of this protein in protecting against cardiac ERS and apoptosis are largely unknown. METHODS We investigated the roles of 14-3-3 protein in vivo during cardiac ERS and apoptosis induced by pressure overload or thapsigargin injection using transgenic (TG) mice that showed cardiac-specific expression of dominant negative (DN) 14-3-3eta. RESULTS Cardiac positive apoptotic cells and the expression of glucose-regulated protein (GRP)78, inositol-requiring enzyme (Ire)1alpha, tumor necrosis factor receptor (TNFR)-associated factor (TRAF)2, CCAAT/enhancer binding protein homology protein (CHOP), caspase-12, and cleaved caspase-12 protein were significantly increased in the pressure-overload induced DN 14-3-3eta mice compared with that in the WT mice. Furthermore, thapsigargin injection significantly increased the expression of GRP78 and TRAF2 expression in DN 14-3-3eta mice compared with that in the WT mice. CONCLUSION The enhancement of 14-3-3 protein may provide a novel protective therapy against cardiac ERS and ERS-initiated apoptosis, at least in part, through the regulation of CHOP and caspase-12 via the Ire1alpha/TRAF2 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Icariin Protects Rat Cardiac H9c2 Cells from Apoptosis by Inhibiting Endoplasmic Reticulum Stress

Endoplasmic reticulum stress (ERS) is one of the mechanisms of apoptotic cell death. Inhibiting the apoptosis induced by ERS may be a novel therapeutic target in cardiovascular diseases. Icariin, a flavonoid isolated from Epimedium brevicornum Maxim, has been demonstrated to have cardiovascular protective effects, but its effects on ERS are unknown. In the present study, we focused on icariin a...

متن کامل

miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart

Prolonged ER stress (ERS) can be associated with the induction of apoptotic cell death in various heart diseases. In this study, we searched for microRNAs affecting ERS in the heart using in silico and in vitro methods. We found that miR-185 directly targets the 3'-untranslated region of Na+/H+ exchanger-1 (NHE-1), a protein involved in ERS. Cardiomyocyte ERS-triggered apoptosis induced by 100 ...

متن کامل

C1q/TNF-Related Protein 9 Protects Diabetic Rat Heart against Ischemia Reperfusion Injury: Role of Endoplasmic Reticulum Stress

As a newly identified adiponectin paralog, C1q/TNF-related protein 9 (CTRP9) reduces myocardial ischemia reperfusion (IR) injury through partially understood mechanisms. In the present study, we sought to identify the role of endoplasmic reticulum stress (ERS) in CTRP9 induced cardioprotection in diabetic heart. Isolated hearts from high-fat-diet (HFD) induced type 2 diabetic Sprague-Dawley rat...

متن کامل

TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

Methamphetamine (MA) leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS). The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary but...

متن کامل

Effects of the Activin A–Follistatin System on Myocardial Cell Apoptosis through the Endoplasmic Reticulum Stress Pathway in Heart Failure

BACKGROUND A previous study suggested that activin A inhibited myocardial cell apoptosis. This study thus aimed to explore the effects of the activin A-follistatin system on myocardial cell apoptosis in heart failure (HF) rats in order to determine whether or not the mechanism operates through the endoplasmic reticulum stress (ERS) pathway. METHODS Myocardial infarction (MI) by vascular depri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2010